Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice

نویسندگان

  • Khurram Bashir
  • Tomoko Nozoye
  • Seiji Nagasaka
  • Sultana Rasheed
  • Nanako Miyauchi
  • Motoaki Seki
  • Hiromi Nakanishi
  • Naoko K. Nishizawa
چکیده

Rice (Oryza sativa) secretes 2'-deoxymugineic acid (DMA) to acquire insoluble iron (Fe) from the rhizosphere. In rice, DMA is synthesized by DMA synthase 1 (OsDMAS1), a member of the aldo-keto reductase super family. We screened OsDMAS1 paralogs for DMA synthesis. None of these paralogs displayed in vitro DMA synthesis activity, suggesting that rice only harbors one functional DMAS. We further characterized OsDMAS1 mutant plants. We failed to screen homozygous knock-out plants (dmas-1), so we characterized DMAS knock-down plants (dmas-kd1 and dmas-kd2). Under Fe-deficient conditions, dmas-kd1 plants were more chlorotic compared to the wild-type (WT) plants, and the expression of OsNAS3, OsYSL2, OsIRT1, and OsIRO2 was significantly up-regulated in the dmas-kd1 mutant, indicating that metal homeostasis was significantly disturbed. The secretion of DMA in dmas-kd1 was not significantly reduced. The dmas-kd1 plants accumulated less Fe in their roots compared to WT plants when grown with 10 μM FeSO4. The dmas-kd1 plants accumulated more Zn in their roots compared to WT plants under Fe-deficient, Fe-EDTA, and FeSO4 conditions. In both dehusked rice seeds (brown rice) and polished rice, no differences were observed for Fe, Cu, or Mn accumulation, whereas dmas-kd1 seeds significantly accumulated more Zn in brown rice. Our data suggests that rice only harbors one functional gene for DMA synthesis. In addition, the knock-down of OsDMAS1 significantly up-regulates the genes involved in Fe uptake and homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rice Enrichment by Genetic Engineering for Combating Iron and Zinc Deficiency

Iron deficiency anemia and zinc deficiency are among the most recognized forms of micronutrient malnutrition and about two billion of people around the world suffer from it.  Monotonous diets based on staple cereals are in fact a poor source of iron and zinc. Rice is a staple food for more than half of the world's population. Various methods have been proposed for food enrichment, but many of t...

متن کامل

Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world's population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and ph...

متن کامل

OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.).

Members of the ATP Binding Cassette B/Multidrug-Resistance/P-glyco-protein (ABCB/MDR/PGP) subfamily were shown to function primarily in Oryza sativa (rice) auxin transport; however, none of the rice ABCB transporters have been functionally characterized. Here, we describe that a knock-down of OsABCB14 confers decreased auxin concentrations and polar auxin transport rates, conferring insensitivi...

متن کامل

2′-Deoxymugineic acid promotes growth of rice (Oryza sativa L.) by orchestrating iron and nitrate uptake processes under high pH conditions

Poaceae plants release 2'-deoxymugineic acid (DMA) and related phytosiderophores to chelate iron (Fe), which often exists as insoluble Fe(III) in the rhizosphere, especially under high pH conditions. Although the molecular mechanisms behind the biosynthesis and secretion of DMA have been studied extensively, little information is known about whether DMA has biological roles other than chelating...

متن کامل

The Sfp-Type 4′-Phosphopantetheinyl Transferase Ppt1 of Fusarium fujikuroi Controls Development, Secondary Metabolism and Pathogenicity

The heterothallic ascomycete Fusarium fujikuroi is a notorious rice pathogen causing super-elongation of plants due to the production of terpene-derived gibberellic acids (GAs) that function as natural plant hormones. Additionally, F. fujikuroi is able to produce a variety of polyketide- and non-ribosomal peptide-derived metabolites such as bikaverins, fusarubins and fusarins as well as metabol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2017